» »

Химический потенциал. Свободная энергия Гиббса и Гельмгольца

29.03.2024

Любая система (например, сосуд с реакционной смесью), находясь в контакте с источником теплоты, в результате теплообмена будет принимать какое-то количество теплоты. В случае бесконечно малого необратимого процесса это количество теплоты будет равно dQ . Увеличение энтропии dS при этом будет больше, чем приведённая теплота:

dS > dQ /T ,

откуда получаем TdS > dQ

и, следовательно, dQ - TdS < 0 .

Если при этом из всех видов работы совершается только работа расширения, то в соответствии с первым началом термодинамики

dQ > dU + pdV.

dU + pdV - TdS < 0 (3.6)

Если при протекании данного процесса не происходит изменения температуры и объём сохраняется постоянным (V = const, Т = const), это выражение переходит в неравенство

(dU - TdS ) V < 0

или d (U - TS ) T, V < 0 .

Величина U - ТS = А называется изохорно-изотермическим потенциалом или свободной энергией при постоянном объёме или энергией Гельмгольца . Часто её называют также и функцией Гельмгольца.

Если же процесс проводится при постоянных давлении и температуре (р = const, Т = const), то неравенство (3.6) можно переписать так:

d (U + pV - TS ) T, p < 0

или, поскольку U + pV = H ,

d (H - TS ) T, p < 0

Величина Н - ТS = G называется изобарно-изотермическим потенциалом, или свободной энергией при постоянном давлении, или энергией Гиббса (функцией Гиббса).

Размерность СИ энергии Гиббса и энергии Гельмгольца - Дж/моль.

Таким образом, в необратимых процессах при постоянной температуре энергия Гиббса системы, как и энергия Гельмгольца убывает:

(dG ) T, p < 0 ,

( ) T, V < 0 .

Если же рассматриваемый процесс является обратимым, то в вышепри­ведённых уравнениях знаки неравенства меняются на знаки равенства:

(dG ) T, p = 0 ,

( ) T, V = 0 .

Энергия Гельмгольца и энергия Гиббса, являются термодинамическими функциями состояния, иначе называемыми термодинамическими потенциалами, так как они характеризуют работу, совершаемую системой, учитывая при этом одновременно изменение энтропии (в виде величины TDS ) и тепловой энергии (DU или соответственно).

Согласно полученным уравнениям энергия Гельмгольца (в изохорных условиях) и энергия Гиббса (в изобарных условиях) являются критерием направления самопроизвольного процесса, а также критерием достижения равновесия. А именно:

1) в самопроизвольном процессе энергия Гиббса G и энергия Гельмгольца А системы уменьшаются. Иными словами, процесс возможен, если для него соблюдается условие

DG < 0 и < 0 .

2) При равновесии в системе её G и А достигают какого-то минимального значения и дальнейшего уменьшения их не происходит:

G = min и А = min,

DG = 0 и = 0 .

Резюмируя, можно вывести уравнения, характеризующие взаимосвязь энергии Гельмгольца и энергии Гиббса с другими термодинамическими функциями:

= dU - ТdS (3.7)

dG = - ТdS (3.8)

После интегрирования уравнений (3.7) и (3.8) получаются выражения, более удобные при практических расчётах:

= DU - ТDS

DG = - ТDS, (3.9)

или для процессов, идущих при стандартных условиях:

DА о = DU о - ТDS о

DG о = DН о - ТDS о.

Отрицательное значение DG о может быть получено в случае отрицательного значения DН о или положительного значения DS о , что означает уменьшение энергии и увеличение неупорядоченности. Если значение TDS о по абсолютной величине намного меньше, чем DН о , знак DG о будет определяться знаком DН о (и наоборот).

В любом случае самопроизвольный процесс приводит к минимально возможному значению H - TS для системы при постоянных температуре и давлении.

Стандартное изменение энергии Гиббса системы в ходе химической реакции DG о r может быть рассчитано с использованием справочных значений DG о f (относящихся к образованию 1 моля данного соединения из простых веществ) по уравнениям:

DG о r = å (n i DG о f i ) прод - å (n i DG о f i ) исх

или, с учётом уравнения (3.9), по стандартным изменениям энтальпии и энтропии в ходе реакции DH о r и TDS о r :

DG о r = DH о r - TDS о r (3.10)

Стандартное изменение энергии Гельмгольца системы в ходе химической реакции DА о r требуется реже и, как правило, вычисляется по уравнению, устанавливающему взаимосвязь DА о и DG о :

DА о = DG о - DnRT ,

где Dn - изменение числа молей газообразных веществ при протекании реакции.

Максимальная работа процесса и химическое сродство

Величина энергии Гиббса и, соответственно, при постоянном объёме - энергии Гельмгольца характеризует максимальное количество работы, которое может быть получено при обратимом равновесном процессе. Так как в других процессах рассеяние энергии будет намного бóльшим, то работу, получаемую от системы в обратимом равновесном изохорном процессе, называют максимальной работой :

w max = -

При постоянном давлении часть работы будет расходоваться на расширение или сжатие системы (рDV ), поэтому в изобарных условиях та же система сможет произвести полезной работы меньше, чем w max на величину рDV . Работа, которая может быть совершена системой в обратимом равновесном изобарном процессе, называется максимальной полезной работой :

w’ max = w max - pDV

Поскольку между энергией Гиббса и энергией Гельмгольца существует соотношение DG = + pDV , можно записать

w’ max = -DG .

Максимальная и, в особенности, максимальная полезная работа химического процесса может служить мерой способности веществ вступать между собой в химическую реакцию, т. е. мерой химического сродства.

Химическое равновесие

Химическое равновесие – это термодинамическое равновесие в системе, в которой возможны прямые и обратные химические реакции.

При определенных условиях активности реагентов могут быть заменены концентрациями или парциальными давлениями. В этих случаях константа равновесия, выраженная через равновесные концентрации K c или через парциальные давления K p , принимает вид

(4.11)
(4.12)

Уравнения (4.11) и (4.12) представляют собой варианты закона действующих масс (ЗДМ) для обратимых реакций в состоянии равновесия. При постоянной температуре отношение равновесных концентраций (парциальных давлений) конечных продуктов к равновесным концентрациям (парциальным давлениям) исходных реагентов, возведенных соответственно в степени, равные их стехиометрическим коэффициентам, величина постоянная .

Для газообразных веществ K p и K c связаны соотношением K p = (RT ) Δn K c , где Δn – разность числа молей начальных и конечных газообразных реагентов.

Константа равновесия определяется при известных равновесных концентрациях реагирующих веществ или по известной ΔG ° химической реакции

Произвольную обратимую химическую реакцию можно описать уравнением вида:

aA + bB Û dD + eE

В соответствии с законом действующих массв простейшем случае скорость прямой реакции связана с концентрациями исходных веществ уравнением

v пр = k пр С А а С В b ,

а скорость обратной реакции - с концентрациями продуктов уравнением

v обр = k обр С D d С E e .

При достижении равновесия эти скорости равны друг другу:

v пр = v обр

Отношение друг к другу констант скорости прямой и обратной реакций будет равно константе равновесия :


Так как это выражение основано на учёте количества реагентов и продуктов реакции, оно является математической записью закона действующих масс для обратимых реакций .

Константа равновесия, выраженная через концентрации реагирующих веществ, называется концентрационнойи обозначается К с . Для более строгого рассмотрения следует вместо концентраций использовать термодинамические активностивеществ а = fC (где f - коэффициент активности). При этом речь идёт о так называемой термодинамической константе равновесия


При малых концентрациях, когда коэффициенты активности исходных веществ и продуктов близки к единице, К с и К а практически равны друг другу.

Константа равновесия реакции, протекающей в газовой фазе, может быть выражена через парциальные давления р веществ, участвующих в реакции:


Между К р и К с существует соотношение, которое можно вывести таким образом. Выразим парциальные давления веществ через их концентрации с помощью уравнения Менделеева - Клапейрона:

pV = nRT ,

откуда p = (n /V )RT = CRT .

Размерность констант равновесия зависит от способа выражения концентрации (давления) и стехиометрии реакции. Часто она может вызывать недоумение, например, в рассмотренном примере [моль -1 м 3 ] для К с и [Па -1 ] для К р , но в этом нет ничего неверного. При равенстве сумм стехиометрических коэффициентов продуктов и исходных веществ константа равновесия будет безразмерной.

Термодинамическими потенциалами, или характеристическими функциями, называют термодинамические функции, которые содержат в себе всю термодинамическую информацию о системе. Наибольшее значение имеют четыре основных термодинамических потенциала:

1) внутренняя энергия U (S ,V ),

2) энтальпия H (S ,p ) = U + pV ,

3) энергия Гельмгольца F (T ,V ) = U - TS ,

4) энергия Гиббса G (T ,p ) = H - TS = F + pV .

В скобках указаны термодинамические параметры, которые получили название естественных переменных для термодинамических потенциалов. Все эти потенциалы имеют размерность энергии и все они не имеют абсолютного значения, поскольку определены с точностью до постоянной, которая равна внутренней энергии при абсолютном нуле.

Зависимость термодинамических потенциалов от их естественных переменных описывается основным уравнением термодинамики , которое объединяет первое и второе начала. Это уравнение можно записать в четырех эквивалентных формах:

dU = TdS - pdV (5.1)

dH = TdS + Vdp (5.2)

dF = - pdV - SdT (5.3)

dG = Vdp - SdT (5.4)

Эти уравнения записаны в упрощенном виде - только для закрытых систем, в которых совершается только механическая работа.

Зная любой из четырех потенциалов как функцию естественных переменных, можно с помощью основного уравнения термодинамики найти все другие термодинамические функции и параметры системы (см. пример 5-1).

Другой важный смысл термодинамических потенциалов состоит в том, что они позволяют предсказывать направление термодинамических процессов. Так, например, если процесс происходит при постоянных температуре и давлении, то неравенство, выражающее второй закон термодинамики:

эквивалентно неравенству dG p,T 0 (мы учли, что при постоянном давлении Q p = dH ), где знак равенства относится к обратимым процессам, а неравенства - к необратимым. Таким образом, при необратимых процессах, протекающих при постоянных температуре и давлении, энергия Гиббса всегда уменьшается. Минимум энергии Гиббса достигается при равновесии.

Аналогично, любой термодинамический потенциал в необратимых процессах при постоянстве естественных переменных уменьшается и достигает минимума при равновесии:

Потенциал

Естественные
переменные

Условие само-произвольности

Условия
равновесия

S = const, V = const

dU = 0, d 2 U > 0

S = const, p = const

dH = 0, d 2 H > 0

T = const, V = const

dF = 0, d 2 F > 0

T = const, p = const

dG = 0, d 2 G > 0

Наибольшее значение в конкретных термодинамических расчетах имеют два последние потенциала - энергия Гельмгольца F и энергия Гиббса G , т.к. их естественные переменные наиболее удобны для химии. Другое (устаревшее) название этих функций - изохорно-изотермический и изобарно-изотермический потенциалы. Они имеют дополнительный физико-химический смысл. Уменьшение энергии Гельмгольца в каком-либо процессе при T = const, V = const равно максимальной механической работе, которую может совершить система в этом процессе:

F 1 - F 2 = A max (= A обр).

Таким образом, энергия F равна той части внутренней энергии (U = F + TS ), которая может превратиться в работу.

Аналогично, уменьшение энергии Гиббса в каком-либо процессе при T = const, p = const равно максимальной полезной (т.е., немеханической) работе, которую может совершить система в этом процессе:

G 1 - G 2 = A пол.

Зависимость энергии Гельмгольца (Гиббса) от объема (давления) вытекает из основного уравнения термодинамики (5.3), (5.4):

. (5.5)

Зависимость этих функций от температуры можно описать с помощью основного уравнения термодинамики:

(5.6)

или с помощью уравнения Гиббса-Гельмгольца:

(5.7)

Расчет изменения функций F и G в химических реакциях можно проводить разными способами. Рассмотрим два из них на примере энергии Гиббса.

1) По определению, G = H - TS . Если продукты реакции и исходные вещества находятся при одинаковой температуре, то стандартное изменение энергии Гиббса в химической реакции равно:

2) Аналогично тепловому эффекту реакции, изменение энергии Гиббса можно рассчитать, используя энергии Гиббса образования веществ:

В термодинамических таблицах обычно приводят абсолютные энтропии и значения термодинамических функций образования соединений из простых веществ при температуре 298 К и давлении 1 бар (стандартное состояние). Для расчета r G и r F при других условиях используют соотношения (5.5) - (5.7).

Все термодинамические потенциалы являются функциями состояния. Это свойство позволяет найти некоторые полезные соотношения между частными производными, которые называют соотношениями Максвелла .

Рассмотрим выражение (5.1) для внутренней энергии. Т.к. dU - полный дифференциал, частные производные внутренней энергии по естественным переменным равны:

Если продифференцировать первое тождество по объему, а второе - по энтропии, то получатся перекрестные вторые частные производные внутренней энергии, которые равны друг другу:

(5.10)

Три другие соотношения получаются при перекрестном дифференцировании уравнений (5.2) - (5.4).

(5.11)

(5.12)

(5.13)

ПРИМЕРЫ

Пример 5-1. Внутренняя энергия некоторой системы известна как функция энтропии и объема, U (S ,V ). Найдите температуру и теплоемкость этой системы.

Решение . Из основного уравнения термодинамики (5.1) следует, что температура - это частная производная внутренней энергии по энтропии:

Изохорная теплоемкость определяет скорость изменения энтропии с температурой:

Воспользовавшись свойствами частных производных, можно выразить производную энтропии по температуре через вторую производную внутренней энергии:

.

Пример 5-2. Используя основное уравнение термодинамики, найдите зависимость энтальпии от давления при постоянной температуре: а) для произвольной системы; б) для идеального газа.

Решение . а) Если основное уравнение в форме (5.2) поделить на dp при постоянной температуре, получим:

.

Производную энтропии по давлению можно выразить с помощью соотношения Максвелла для энергии Гиббса (5.13):

.

б) Для идеального газа V (T ) = nRT / p . Подставляя эту функцию в последнее тождество, получим:

.

Энтальпия идеального газа не зависит от давления.

Пример 5-3. Выразите производные и через другие термодинамические параметры.

Решение . Основное уравнение термодинамики (5.1) можно переписать в виде:

,

представив энтропию как функцию внутренней энергии и объема. Коэффициенты при dU и dV равны соответствующим частным производным:

.

Пример 5-4. Два моля гелия (идеальный газ, мольная теплоемкость C p = 5/2 R ) нагревают от 100 о С до 200 о С при p = 1 атм. Вычислите изменение энергии Гиббса в этом процессе, если известно значение энтропии гелия, = 131.7 Дж/(моль. К). Можно ли считать этот процесс самопроизвольным?

Решение . Изменение энергии Гиббса при нагревании от 373 до 473 К можно найти, проинтегрировав частную производную по температуре (5.6):

.

Зависимость энтропии от температуры при постоянном давлении определяется изобарной темлоемкостью:

Интегрирование этого выражения от 373 К до T дает:

Подставляя это выражение в интеграл от энтропии, находим:

Процесс нагревания не обязан быть самопроизвольным, т.к. уменьшение энергии Гиббса служит критерием самопроизвольного протекания процесса только при T = const и p = const.

Ответ. G = -26850 Дж.

Пример 5-5. Рассчитайте изменение энергии Гиббса в реакции

CO + ЅO 2 = CO 2

при температуре 500 K и парциальных давлениях 3 бар. Будет ли эта реакция самопроизвольной при данных условиях? Газы считать идеальными. Необходимые данные возьмите из справочника.

Решение . Термодинамические данные при температуре 298 К и стандартном давлении 1 бар сведем в таблицу:

Вещество

Энтальпия образования
, кДж/моль

Энтропия
, Дж/(моль. К)

Теплоемкость
, Дж/(моль. К)

КДж/моль

Дж/(моль. К)

Дж/(моль. К)

CO + ЅO 2 =
= CO 2

Примем, что C p = const. Изменения термодинамических функций в результате реакции рассчитаны как разность функций реагентов и продуктов:

f = f (CO 2) - f (CO) - Ѕ f (O 2).

Стандартный тепловой эффект реакции при 500 К можно рассчитать по уравнению Кирхгофа в интегральной форме (3.8):

Стандартное изменение энтропии в реакции при 500 К можно рассчитать по формуле (4.9):

Стандартное изменение энергии Гиббса при 500 К:

Для расчета изменения энергии Гиббса при парциальных давлениях 3 атм необходимо проинтегрировать формулу (5.5) и использовать условие идеальности газов (V = n RT / p , n - изменение числа молей газов в реакции):

Эта реакция может протекать самопроизвольно при данных условиях.

Ответ . G = -242.5 кДж/моль.

ЗАДАЧИ

5-1. Выразите внутреннюю энергию как функцию переменных G , T , p .

5-2. Используя основное уравнение термодинамики, найдите зависимость внутренней энергии от объема при постоянной температуре: а) для произвольной системы; б) для идеального газа.

5-3. Известно, что внутренняя энергия некоторого вещества не зависит от его объема. Как зависит давление вещества от температуры? Ответ обоснуйте.

5-4. Выразите производные и через другие термодинамические параметры и функции.

5-5. Напишите выражение для бесконечно малого изменения энтропии как функции внутренней энергии и объема. Найдите частные производные энтропии по этим переменным и составьте соответствующее уравнение Максвелла.

5-6. Для некоторого вещества известно уравнение состояния p (V , T ). Как изменяется теплоемкость C v с изменением объема? Решите задачу: а) в общем виде; б) для какого-либо конкретного уравнения состояния (кроме идеального газа).

5-7. Докажите тождество: .

5-8. Энергия Гельмгольца одного моля некоторого вещества записывается следующим образом:

F = a + T (b - c - b ln T - d ln V ),

где a , b , c , d - константы. Найдите давление, энтропию и теплоемкость C V этого тела. Дайте физическую интерпретацию константам a , b , d .

5-9. Нарисуйте график зависимости энергии Гиббса индивидуального вещества от температуры в интервале от 0 до T > T кип.

5-10. Для некоторой системы известна энергия Гиббса:

G(T ,p ) = aT (1-lnT ) + RT lnp - TS 0 + U 0 ,

где a , R , S 0 , U 0 - постоянные. Найдите уравнение состояния p (V ,T ) и зависимость U (V ,T ) для этой системы.

5-11. Зависимость мольной энергии Гельмгольца некоторой системы от температуры и объема имеет вид:

где a , b , c , d - константы. Выведите уравнение состояния p (V ,T ) для этой системы. Найдите зависимость внутренней энергии от объема и температуры U (V ,T ). Каков физический смысл постоянных a , b , c ?

5-12. Найдите зависимость мольной внутренней энергии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля)

,

где B (T ) - известная функция температуры.

5-13. Для некоторого вещества зависимость теплоемкости от температуры имеет вид: C V = aT 3 при температуре 0 - 10 К. Найдите зависимость энергии Гельмгольца, энтропии и внутренней энергии от температуры в этом диапазоне.

5-14. Для некоторого вещества зависимость внутренней энергии от температуры имеет вид: U = aT 4 + U 0 при температуре 0 - 10 К. Найдите зависимость энергии Гельмгольца, энтропии и теплоемкости C V от температуры в этом диапазоне.

5-15. Выведите соотношение между теплоемкостями:

.

5-16. Исходя из тождества , докажите тождество:

.

5-17. Один моль газа Ван-дер-Ваальса изотермически расширяется от объема V 1 до объема V 2 при температуре T . Найдите U , H , S , F и G для этого процесса.

Лекция 5. Энергия Гельмгольца, энергия Гиббса

5.1 Свободная энергия Гельмгольца, энергия Гиббса

5.2 Фундаментальное уравнение Гиббса и вспомогательные термодинамические функции

5.3 Изменение энергии Гиббса с температурой и давлением

Из цикла Карно известно, что η < 1 (т.е. в работу превращается не вся теплота). Поэтому даже в равновесном термодинамическом процессе всё изменение внутренней энергии нельзя превратить в работу.

Изучая природу внутренней энергии Гельмгольц пришел к выводу, что она неоднородна и состоит из двух частей:

где F –«свободная» энергия, способная к превращениям и производству полезной работы, функция (энергия) Гельмгольца, изохорно-изотермический потенциал (V и T = const), изохорный потенциал TS –«связанная» энергия, которая в работу не превращается и теряется в виде теплоты в окружающую среду. Функцию F Гельмгольц ввел в практику в 1882 году.

Значит (5.4)

где ∆ F − изменение энергии Гельмгольца.

При V=const и T=const в стандартных условиях последняя формула может быть представлена в виде:

Энергия Гельмгольца, также как внутренняя энергия и энтропия – функция состояния системы.

Критерием самопроизвольности изохорно-изотермического процесса являются неравенства ∆F V , T < 0, > 0. При ∆ F V , T > 0 и < 0 имеет место обратный процесс, в состоянии химического равновесия ∆ F V , T = 0, = 0 (- максимальная полезная работа).

Однако чаще в термодинамике приходится иметь дело с изобарно-изотермическими процессами (Р и T = const), поэтому удобнее пользоваться функцией (энергией) Гиббса.

где G Р,Т – функция Гиббса, свободная энтальпия, изобарно-изотермический потенциал, изобарный потенциал.

Энергия Гиббса – наиболее важная и часто употребляемая на практике термодинамическая функция. Введена в термодинамику Гиббсом в 1875 году.

G определяется через известные термодинамические функции.

При р,Т= const:

В стандартных условиях изменение энергии Гиббса может быть представлено следующим образом:

Критерием самопроизвольности прямого изобарно-изотермического процесса являются неравенства ∆G Р,Т < 0 и A′ > 0; при ∆ G Р,Т > 0 и A′ < 0 протекает обратный процесс, в состоянии химического равновесия ∆ G Р,Т = 0 и A′ = 0.

Энергия Гельмгольца и энергия Гиббса – функции состояния, поэтому ∆F и ∆G не зависят от пути и от характера протекания процесса, а определяются только начальным и конечным состоянием системы:



Для кругового процесса их изменение = 0:

Абсолютные значения F и G определить невозможно (т.к. они зависят от U и Н), обычно определяют величины их изменения ∆F и ∆G (кДж/моль или ккал/моль) путем измерения работы равновесного процесса. Протеканию прямого процесса в термодинамической системе способствуют: ∆Н < 0 и∆S>0, ∆G = ∆Н – T∆S, что приводит к уменьшению ∆G в выражении.

Голландский физико-химик Вант-Гофф предложил новую теорлю химического сродства, которая, не объясняя природы химического сродства, ограничивается указанием способа его измерения, т. е. дает количественную оценку химическому сродству.

Вант-Гофф использует в качестве меры химического сродства максимальную работу Ауах или для реакций, протекающих при или соответственно.

Максимальная работа равна энергии, которую нужно приложить к системе, чтобы остановить реакцию, т. е. преодолеть, силы химического сродства. Поскольку реакция протекает в направлении совершения положительной максимальной работы, знак или определяет направление самопроизвольного течения химического взаимодействия.

Максимальная работа при постоянном объеме равна

Разность называют энергией Гельмгольца системы и обозначают буквой Таким образом,

Максимальная работа при постоянном давлении равна

Разность называют энергией Гиббса системы и обозначают буквой Таким образом,

Энергия Гиббса химической реакции.

Энергия Гиббса термодинамическая функция состояния системы Изменение энергии Гиббса в системе при протекании химической реакции называют энергией Гиббса химической реакции. Согласно уравнениям (IV.20) и (IV.21),

Исходя из (IV.21), энергия Гиббса химической реакции характеризует направление и предел самопроизвольного протекания реакции в условиях постоянства температуры и давления.

Энергия Гельмгольца химической реакции.

Энергия Гельмгольца также является термодинамической функцией состояния системы Изменение энергии Гельмгольца в системе при протекании реакции называют энергией Гельмгольца химической реакции. Согласно (IV. 18) и (IV.19),

где и - изменение соответствующих термодинамических функций в ходе реакции, протекающей при и температуре Т.

Величина [см. уравнение (IV. 19)] характеризует направление и предел самопроизвольного течения реакций в изохорно-изотермических условиях.

На рис. IV.3 приведены соотношения между основными термодинамическими функциями состояния системы.

Энергия Гиббса образования химических соединений.

Энергия Гиббса химической реакции являясь изменением термодинамической функции состояния системы может быть вычислена по разности

(индексы «2» и «1» относятся к конечному и начальному состояниям системы соответственно). При расчете энергии Гиббса химической реакции по уравнению (IV.24) следует иметь в виду, что - сумма энергий Гиббса образования всех продуктов реакции, - сумма энергий Гиббса образования всех исходных веществ. Стандартную энергию Гиббса химической реакции вычисляют по разности сумм стандартных энергий Гиббса образования продуктов реакции и исходных веществ.

Стандартной энергией Гиббса образования химического соединения называют энергию Гиббса реакции образования одного моля этого соединения, находящегося в стандартном состоянии, из соответствующих

Рис. IV.3. Соотношение важнейших термодинамических функций

простых веществ, также находящихся в стандартных состояниях и термодинамически устойчивых при данной температуре фазах и модификациях (табл. IV.3).

Стандартные энергии Гиббса образования простых веществ принимают равными нулю, если их агрегатные состояния и модификации устойчивы при стандартных условиях и 298,16 К.

Направление и пределы самопроизвольного течения химических реакций.

В соответствии с (IV. 19) и (IV.21) положительной максимальной работе А или отвечают отрицательные значения энергии Гельмгольца и энергии Гиббса химических реакций. Иными словами, при постоянных температуре и давлении реакция протекает самопроизвольно в том направлении, которому отвечает убыль энергии Гиббса системы Поэтому условием самопроизвольного течения химической реакции при заданных и Т является неравенство

Пределом самопроизвольного течения реакции при т. е. условием равновесия, служит достижение минимального для данных и Т значения функции

При постоянных температуре и объеме реакция протекает самопроизвольно в том направлений, которому отвечает убыль энергии Гельмгольца системы Поэтому условием самопроизвольного

Таблица IV.3, Стандартные энергии Гиббса образования некоторых простых веществ и соединений при 298,16 К

произвольного течения химической реакции при заданных V и Т является неравенство

Пределом самопроизвольного течения реакции при т. е. условием равновесия, служит достижение минимального для данных V и Т значения функции

Если при изменению химического состава системы отвечает возрастаение энергии Гиббса то это значит, что самопроизвольная реакция не идет. Неравенство

означает, что реакция может идти самопроизвольно только в обратном направлении, которому отвечает убыль энергии Гиббса системы. Рассчитать стандартную энергию Гиббса химической реакции при 298,16 К и тем самым выяснить знак изменения функции несложно.

Так, например, используя данные, приведенные в табл. IV.3, можно рассчитать стандартную энергию Гиббса реакции при 298,16 К (для 1 моль

Полученное значение энергии Гиббса реакции удовлетворяет неравенству (IV.25). Это значит, что при 101 кПа и 298 К процесс взаимодействия оксида натрия с водой может протекать самопроизвольно в направлении получения (к).

Однако стандартная энергия Гиббса химической реакции не может быть критерием направления или предела самопроизвольного протекания химического взаимодействия в условиях, отличных от стандартных. Нельзя также подменять величину величиной Все это несколько затрудняет использование энергии Гиббса для оценки процессов, протекающих в реальных условиях.

Из уравнения (IV.22) следует, что при энергия Гиббса химической реакции тем меньше, чем меньше и чем больше Наибольшее химическое сродство веществ друг к другу проявляется в реакциях, протекающих с выделением теплоты и сопровождающихся ростом энтропии системы Из уравнения (IV.22) следует также, что самопроизвольно не могут осуществляться эндотермические процессы протекающие с уменьшением энтропии так как при этом величина всегда положительна. Эндотермические взаимодействия могут самопроизвольно идти только при условии Таким взаимодействиям способствует повышение температуры, так как при этом увеличивается значение энтропийного фактора процесса

Итак, любая реакция при постоянных температуре и давлении протекает самопроизвольно в направлении убыли энергии Гиббса.

Рис. IV.4. Изменение энергии Гиббса в системе

Пределом этой убыли является минимальное значение отвечающее состоянию равновесия системы. Состояние равновесия наиболее устойчиво, и всякое отклонение от него требует затраты энергии (не может быть самопроизвольным). На рис. IV.4 представлена зависимость энергии Гиббса системы от состава реакционной смеси. Точке А отвечает состав 100% вещества А, а точке вещества В. Процесс идет самопроизвольно до тех пор, пока величина энергии Гиббса системы падает от до Процесс идет самопроизвольно до тех пор, пока величина падает от до Точка С на оси абсцисс, отвечающая минимальному значению энергии Гиббса определяет равновесный состав смеси при заданных условиях . Состояние равновесия характеризуется равенством

В уравнении (IV.28) нельзя подменять величину энергии Гиббса реакции протекающей при некоторых и Т легко вычисляемой по справочным данным, величиной стандартной энергии Гиббса реакции Равенство не является условием равновесия процесса, протекающего в реальных условиях.

Константа равновесия.

Точка С на рис. IV.4, отвечающая условию (IV.28), определяет равновесный состав реакционной смеси в системе при некоторых постоянных значениях давления и температуры. Концентрации газообразных или растворенных веществ А и В в равновесной реакционной смеси называются равновесными концентрациями, а их соотношение выражается константой равновесия:

Если реагенты А и В газообразны, то можно говорить об их равновесных парциальных давлениях и об их соотношении

Если химическое взаимодействие между газами протекает так, что число молей газообразных веществ до и после реакции одинаково (например, то константа равновесия (IV.29) равна константе равновесия Связь между и устанавливается с помощью уравнения если реагенты ведут себя как идеальные газы.

Константа равновесия реакции дает представление о выходе

продуктов реакции при заданной температуре. Так, например, если константа равновесия процесса при температуре Т равна единице: то равновесный состав реакционной смеси характеризуется равенством концентраций и С в, т. е. процесс при температуре Т идет самопроизвольно до тех пор, пока концентрация в смеси вещества В не станет равной концентрации А.

Популярное